RNase P enzymes
نویسندگان
چکیده
منابع مشابه
Antibiotics and RNase P
RNase P is an essential endonuclease in tRNA biogenesis, which generates the mature 5'-termini of tRNAs. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA and protein subunits. The catalytic function of ribonucleoprotein RNase P enzymes resides entirely in the RNA subunit. Its high structural and functional diversity among representatives of a vast variety of ...
متن کاملRNase MRP and RNase P share a common substrate.
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that processes RNA from the mammalian mitochondrial displacement loop containing region. RNase P is a site-specific ribonucleoprotein endoribonuclease that processes pre-tRNAs to generate their mature 5'-ends. A similar structure for the RNase P and RNase MRP RNAs and a common cleavage mechanism for RNase MRP and RNase P enzymes ha...
متن کاملRNase P RNA-mediated catalysis.
The endoribonuclease RNase P is involved in the processing of tRNA precursors to generate mature 5' termini. The catalytic activity of RNase P is associated with an RNA, RNase P RNA. A specific interaction between the 3' end of the substrate and RNase P RNA, to form an RNase P RNA-substrate complex, is referred to as the '73-294-interaction'. This interaction has an important role for efficient...
متن کاملArchaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins.
Although archaeal RNase P RNAs are similar in both sequence and structure to those of Bacteria rather than eukaryotes, and heterologous reconstitution between the Bacillus subtilis RNase P protein and some archaeal RNase P RNAs has been demonstrated, no archaeal protein sequences with similarity to any known bacterial RNase P protein subunit have been identified, and the density of Methanotherm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RNA Biology
سال: 2013
ISSN: 1547-6286,1555-8584
DOI: 10.4161/rna.24513